A self-organizing binary decision tree for incrementally defined rule-based systems

نویسندگان

  • Tony R. Martinez
  • Douglas M. Campbell
چکیده

This paper presents an ASOCS (adaptive self-organizing concurrent system) model for massively parallel processing of incrementally defined rule systems in such areas as adaptive logic, robotics, logical inference, and dynamic control. An ASOCS is an adaptive network composed of many simple computing elements operating asynchronously and in parallel. This paper focuses on adaptive algorithm 3 (AA3) and details its architecture and learning algorithm. It has advantages over previous ASOCS models in simplicity, implementability, and cost. An ASOCS can operate in either a data processing mode or a learning mode. During the data processing mode, an ASOCS acts as a parallel hardware circuit. In learning mode, rules expressed as boolean conjunctions are incrementally presented to the ASOCS. All ASOCS learning algorithms incorporate a new rule in a distributed fashion in a short, bounded time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Correspondence A Self-organizing Binary Decision Tree for Incrementally Defined Rule-Based Systems

This paper presents an adaptive self-organizing concurrent system (ASOCS) model for massively parallel processing of incrementally defined rule systems in such areas as adaptive logic, robotics, logical inference, and dynamic control. An ASOCS is an adaptive network composed of many simple computing elements operating asynchronously and in parallel. This paper focuses on adaptive algorithm 3 (A...

متن کامل

A Rule Extractor for Diagnosing the Type 2 Diabetes Using a Self-organizing Genetic Algorithm

Introduction: Constructing medical decision support models to automatically extract knowledge from data helps physicians in early diagnosis of disease. Interpretability of the inferential rules of these models is a key indicator in determining their performance in order to understand how they make decisions, and increase the reliability of their output. Methods: In this study, an automated hyb...

متن کامل

Support Vector Machines with Binary Tree Architecture for Multi-Class Classification

Abstract— For multi-class classification with Support Vector Machines (SVMs) a binary decision tree architecture is proposed for computational efficiency. The proposed SVMbased binary tree takes advantage of both the efficient computation of the tree architecture and the high classification accuracy of SVMs. A modified Self-Organizing Map (SOM), KSOM (Kernel-based SOM), is introduced to convert...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

Efficient Search in Structured Peer-to-Peer Systems: Binary v.s. k-ary Unbalanced Tree Structures

We investigate the search cost in terms of number of messages generated for routing queries in tree-based P2P structured systems including binary and k-ary tree structures with different arities and different degrees of imbalance in the tree shape. This work is motivated by the fact that k-ary balanced tree access structures can greatly reduce the number of hops for searching compared to the bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1991